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Article

catchvariabilities and accounting for these variabilities more explicitly
would bolster MPA benefits**. MPAs also tend to increase the abun-
danceoflarger predatory target species, with possible food-web effects*
thatcannoteasily be resolved and are beyond the scope of this analysis.
Fourth, our results relating to CO, released through trawling represent
apreliminary best estimate, based on the available data, and further
research is required to verify these estimates across scales.

In addition, we recognize that the combination of disparate global
datasets introduces uncertainty into our results. Thus, we explore the
uncertaintyin the biodiversity prioritization in a sensitivity analysis that
simulates commissionerrorsinspecies distributionsand addsrandom
noise to feature weights (see Methods, Supplementary Figs. 20-22).
Finally, we highlight the need for higher-resolution regional analyses to
better resolve priority areasfor MPAs at that scale. Our analysiscanalso
be expanded to explicitly model the costs of improved ocean protec-
tion*?,and to include additional benefits such as increased tourismrev-
enue”, improved human well-being* and savings due toimproved flood
and storm-surge protection in coastal habitats*. Reduced CO, emissions
through reduced trawling effort could also generate carbon credits, and
provide ameaningful opportunity for financing MPA creation.

Our results may be informative in the context of both national and
global conservation targets. The 15th meeting of the Conference of
the Parties (COP15) United Nations (UN) Convention on Biological
Diversity (CBD), which is to be held in 2021, is expected to produce a
global agreement for nature, with an emergent movement to protect
atleast 30% of the ocean by 2030***¢to achieve bothbiodiversity con-
servation and climate mitigation goals. Our results lend credence to
this target and suggest that a substantial increase in ocean protection
could achieve triple benefits—not only protecting biodiversity, but
also boosting the productivity of fisheries and securing marine carbon
stocksthatareatriskfrombottom trawling and other industrial activi-
ties. Our framework has the flexibility to incorporate the preferences
of different governmentsor stakeholdersinidentifying priority areas,
which can help to motivate amore science-based expansion of ocean
protection and contribute to solving three major challenges that face
humanity in the twenty-first century—namely, the decline of global
biodiversity, the need to provide nutrition to a growing population
and theimperative to mitigate climate change. Finally, our framework
allows us to identify widespread co-benefits arising from expanded
protection that overcome previously perceived trade-offs between
biodiversity protection and fisheries.
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Methods

Data

We used the best available spatial data layers comprising current
species distributions (n = 4,242), projected species distributions
(n =4,242), marine sedimentary carbon stocks (n =1), seamount
density distributions (n =194), coastal, pelagic, abyssal and bathyal
biogeographical provinces (n=127), commercially exploited fishand
invertebrate stocks (n=1,150), and human impacts on the world’s
oceans (n =70). We harmonized all data layers with a Mollweide
equal-area projection (around 50 km x 50 km), and these were cropped
to ocean areas using a1:50 m land mask obtained from https://www.
naturalearthdata.com. All data processing was donein Rusing rgdal,
raster, sf and tidyverse libraries.

Specieslist and distributions

We constrained our analysis to consider those species that are (1)
directlyorindirectly affected by threatsabatable by MPAsasreported
by the International Union for Conservation of Nature (IUCN) or (2)
reported in global catch databases**8. The resulting dataset con-
tains 5,405 species, 30% of which are directly targeted by fisheries.
We obtained species distribution information as the probability of
occurrenceineachspatial cellon the basis of environmental variables
and constrained by currently known natural ranges™. Distributions for
seabirds were obtained directly from BirdLife International (http://
datazone.birdlife.org/home). Species distributions were available at
a0.5°resolution, and were subsequently rasterized, re-projectedto a
Mollweide equal-area projection and normalized such that the values
acrossaspeciesrangeadd up to one. Overall, speciesdistribution data
wereavailablefor 4,242 (78%) of the speciesintheinitial list represent-
ing all major taxonomic groups: Osteichthyes (n =2,115), Chondrich-
thyes (n=760), Cnidaria (n =586), Mollusca (n = 205), Arthropoda
(n=201), Aves (n=173), Mammalia (n =111), Echinoderms (n=39) and
Reptilia (n=18) (Supplementary Figs. 23-25, Supplementary Table1).

Seamounts

Weinclude seamountsinouranalysis as they are known aggregators of
pelagicbiodiversity and animportant habitat for deep-sea speciesthat
arestillunderrepresented in global species distribution datasets*. We
used the spatial locations of 10,604 of the world’s bathyal seamounts
(below 3,500 m) classified into 194 classes based on four biologically
relevant characteristics: overlying export production, summit depth,
oxygen level and proximity*® (Supplementary Fig. 26). For each sea-
mount class, we created a raster layer with the number of seamounts
in each grid cell, which we normalized to obtain the fraction of total
seamounts per unit area. Each class of seamounts was treated as an
individual feature in the analysis.

Biogeographical provinces

Weused the spatial delineations of the pelagic (n=37), coastal (n=62),
bathyal (n=14), and abyssal (n=14) provinces of the ocean asindividual
biodiversity features to ensure representation of different facets of
biodiversity throughout the world’s ocean>3, These provinces have
been delineated on the basis of the best available oceanographic and
biological dataalong with expert consultationand are thought to con-
tainbiogeographically distinct assemblages of speciesand communi-
ties with a shared evolutionary history (Supplementary Figs. 28, 29).
Spatial polygons were converted to rasters by estimating the fraction
of each pixel covered by each province for province polygons that
overlapped the centre of the pixel.

Food provisioning

We used data for 1,150 commercially exploited fish and invertebrate
stocks—which have an associated MSY of 56.6 MMT—to model their
response to MPAs and the resulting change infuture catchin remaining

fishing areas after protection®, Because global MSY isat least SO MMTZ,
andstocksnotincludedinouranalysis are probablyinworse shape than
the stocksfor which we have requisite data, we can conservatively scale
up the food provisioning potential from MPAs by 41%.

We define the food provisioning potential of a given network of MPA
(s) as thechangein total future catch thatis due to the MPA network s;
thatis, AH,=XH, ;- L ;H,,, , where His the catch of stock jgiven MPA
network sand Hy,, ;is the catch of stock j with no additional MPAs (or
business-as-usual; bau).

We model the biomass transitions of each individual stockjinside
(Bi,;) and outside (B,,.;) MPAs as

ny;

Bin,j,t +Bout,j,t

Bin,j,t+1:Bin,j,t+Rjrj(Bin,j,t+Bout,j,t)[1_ K, J_mj(l_Rj)

R;
Bin,j,t - l_R_Bout,j,t and
J

Bout,j,tﬂ =(1- Ej,t)Bout,j,t +(1- Rj)rj(Biﬂ.j.f + Bout,j,t)

Binjc+Boutjie R:
[1_% +my(1-R)| By, ,j,t—l_—’l,%_Bout gl

where tis time, r;is intrinsic growth rate, K; is carrying capacity, m;is
speciesrelativemobility, R;is the proportion of stock’s carrying capac-
ityin MPAs and E;is the exploitation rate.

ThecatchofstockjateachtimestepisgivenbyH;,=E; B, ;.and the
steady-state catchis given by

H=E, [’”j’(j(l - Rj)J [1 _EQ-Rymy J
ERi+m (ER;+myr;

Wederivetheintrinsicgrowthrate (r) ofindividual stocks from Thor-
son*, FishBase> and SealLifeBase®. We combine the MSY estimate
per stock from a previous study? with our compiled growth rates to
calculate the total carrying capacity per stock. We consistently used
species-specific intrinsic growth rates in our model regardless of the
region, as regional variationsin growth rates for over a thousand stocks
are not available. We distribute the total carrying capacity in space in
proportion to the stock’s probability of occurrence from AquaMaps
species’ native ranges®. Finally, we derive species relative mobility (m)
by categorizing stocks based onthelinear scales of movement of adult
individuals: m= 0.1 represents species with maximum scales of move-
mentoflessthan1km, m=0.3 represents species with maximum scales
of movement ofbetween1-50 km, and m=0.9 represents specieswith
maximum scales of movement of morethan 50 km. Other parameters

for evaluating MPA effects on catch are generated dynamically, such
as the proportion of stock range under protection (R).

Carbon

We used a published modelled spatial layer of global marine carbon
stocks stored in the first metre of ocean sediment based on a sam-
ple of 11,578 sediment cores collected throughout the global ocean®
(Supplementary Fig. 30). The datalayer was resampled using bilinear
interpolation and re-projected from its original 1-km? resolution to
match our working resolution and equal-area projection.

Administrative data

We use the Marine Protection Atlas database’ to select MPAs that are
classified asfully or highly protected (that is, no-take MPAs or protected
areas in which only minimal subsistence or recreational fisheries are
allowed), and thathavebeenimplemented as of September2020. The
resulting dataset consists of 1,398 MPAs, covering 2.7% of the world’s
ocean. Lastly, we used the political boundaries of the world’s EEZs as
made available by https://marineregions.org/(v.10).
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Biodiversity benefit
Aschematic diagramfor calculating benefits for each objectiveis shown
inSupplementaryFig. 31.Forbiodiversity, weinclude 4,559 individual
features corresponding to: (1) species’ native ranges, extinction risk
and functional and evolutionary distinctiveness for 4,242 marine spe-
cies that are directly or indirectly affected by fishing"; (2) density of
seamounts grouped into 194 distinct classes®®; and (3) 37 pelagic, 62
coastal, 14 abyssal and 14 bathyal biogeographical provinces®*. For
each feature, we use benefit functions resembling species—area rela-
tionshipsto capture the diminishing marginal benefit from additional
protection.

We define the biodiversity benefit (B) of protecting a set of pixels
(s)as

B=) 0/X;)%,
J

where g;represents the weight givento featurejand z;is the curvature
ofapowerfunctionanalogoustoaspecies-areacurve. X corresponds
to the fraction of the total suitable habitat of featurej that remains
viable given the set of protected pixels (s), and is defined as

X, =Y v+ 3 opft,

ics i¢s

where u,"} and v}* correspond to the fraction of the feature’s total
habitat that remains suitable in pixel i if {is protected, and if pixel {is
leftunprotected, respectively. These are defined as

uo(l 1, ) and

out _
U Uljo

A-1)1-1,),
wherey, ; represents the current fraction of a feature’s total suitable
habitat presentin pixel i, /, is the fraction of that habitat that may be
lostowing to un-abatablei |mpacts and/, isthefraction of that habitat
that may be lost as a result of abatable impacts® (Supplementary
Figs.17-19). The term ‘feature’ refers to an individual species, a class
of seamount, or abiogeographical province.

Weestimate/, and 1, usmg the most recent five years (2009-2013)
of human lmpacts on the world’s ocean’. Datawere classified into
impacts that are abatable (artisanal fishing, commercial fishing clas-
sified in pelagic high-by-catch, pelagiclow-by-catch, demersal destruc-
tive, demersal non-destructive high by-catch, and demersal
non-destructive low by-catch) and those that are un-abatable (sea
surface temperaturerise, light pollution, organics and nutrient pollu-
tion, ocean acidification, shipping, and sea-level rise) in relation to
MPAs. Human impact layers were resampled using bilinear interpola-
tion to match our working resolution. To estimate the fraction of suit-
ablehabitatlost we assume a saturating relationship rescaled between
O-1suchthat

__ log(Ficy fy.) - min(log(Ficy /)
max(log(Z§-; I )) - min(log(Zf_, /. )

;¥ k € abatable

log(X 41 Ig.)) - min(log(X X Ix.)
max(log(§-1 I 9) - min(log(¥ 51 /i )

;V k & abatable,

u;

where/,;isthe average impactof stressor kin pixel {inthelast five years,
and K'is the total number of stressor layers in the model (n=16). The
human impacts dataset already accounts for the differential effects

of astressor in different ecosystems and environmental conditions
(forexample, ocean productivity). Ideally one would incorporate the
differential effects across species. However, given the current limited
state of knowledge regarding species-response curves to different
stressors, we assume that the abatable and un-abatable impactsina
pixel affect all features in that pixel equally.

We weighted the speciesin theanalysisasa function of their extinc-
tion risk (EX)*°, functional distinctiveness (FD) and evolutionary dis-
tinctiveness (ED). These weights are calculated using additive and
multiplicative components as proposed previously®°

0;=EX{FD; + ED}) ; Vj € species.
Following a previous report®®, we numerically coded the [IUCN clas-
sification of extinction risk such that the highest weight is given to
critically endangered species (least concern =1; near-threatened =2;
vulnerable =4; endangered = 6; critically endangered = 8; data defi-
cient =2). Unassessed species were treated as data-deficient, and the
numerical values were normalized so that the maximum weight equals1.

For each taxonomic class, we used a set of functional traits and a
phylogeny toestimate species functional and evolutionary distinctive-
ness, respectively, for fishes®, sharks®?, marine mammals®, birds®*. We
computed the functional distance between all pairs of species within
agiven taxonomic class using the compute_dist_matrix function in
the funrar R package. Functional distinctiveness FD,of species i rep-
resents the extent to which the traits of species i are distinct relative
to the traits of all the other species from the same taxonomic class at
aglobal scale®:

FD, = zlj\'lzl;j#i d;; ,
N-1

whered;;is the functional distance betweenspeciesiandj,and Nis the
total number of species. The functional distances d;;are scaled between
0 and 1 (maximum value), so FD;is O when all species have the same
trait values (the functional distance between all species pairs is 0),
and1when speciesiismaximally differentiated fromall other species.
This calculation was carried out using the distinctiveness function in
the funrar R package. Using the same approach, we also estimated
speciesevolutionary distinctiveness. The evolutionary distinctiveness
of species i, ED,, is high when the species has a long unshared branch
length with all the other species. The more ‘isolated’ a species is in
aphylogenetic tree, the higher its evolutionary distinctiveness. We
computed ED using the evol.distinct function from the picante R pack-
age. We did not have enough information to estimate functional and
evolutionary distinctiveness for 15% of the species in the analysis. We
imputed these values using arithmetic means for each taxonomic class
when possible, and sample meanswhen entire classeslacked data (for
example, Reptilia). For seamounts, we weighted each class the same,
such that the aggregate weight given to all seamounts equalled the
aggregate weight given to all species. The same weighting approach
was applied to the biogeographical provinces.

The parameter z;, which determines the curvature of the power func-
tion and is analogous to the exponent of a species-area curve, was set
equalto 0.25for allfeatures, based onatypical species-arearelationship
z-value between 0.2 and 0.3%. The rationale behind a benefit function
with exponent z;is that there is a relationship between area lost (that
is, not protected) and a species’ risk of extinction. The parameteriza-
tion of z;will depend on a species’ characteristics and other informa-
tion, including scale of movement (for which z decreases with higher
movement®), trophic level (for which z increases with trophic rank®®)
and human impacts (for which z decreases with higher exploitation®),
amongst other things. Afeature-specific z;would therefore theoretically
be preferred, but in the absence of a systematic method for parameter-
izing zfor allfeatures inour analysis, we test arange of constant z-values



(z=0.1,0.2,0.3,0.4). Although zis important to determine the biodi-
versity benefits underbusiness-as-usual and thus the magnitude of the
MPA effect on biodiversity persistence, the normalized global benefits
accruing from protection are relatively insensitive to the value of this
parameter (Supplementary Figs. 32, 33). We used the Kendall tau correla-
tion coefficient—anonparametric statistic that measures the similarity
inthe ordering of the rankings—to compare the top 30% of the solutions
usingz=0.1andz=0.4, and found that the results are robustto z (t=0.95).

Food provisioning benefit

The food provision benefit (F) is defined as the differencein catch made
by an additional set of fully protected pixels or MPAs (s); that is, the
difference between the global catch with and without implementing
additional MPAs. Fis estimated atequilibrium such that:

Fm|y £ | TR () QR )|
S UE Ry )T (E Rt myr

J

Z Epau j MK(1= Ry ;) 1- Epay (1= Ruay )y
j A Ebau,ijau,j + mj (Ebau,ijau,j + rnj)rj ’

where m;represents the mobility of stockj, K;is total carrying capac-
ity, R;;is the fraction of total K that is inside the set of protected cells
(s) and r;represents the stock growth rate. The parameters £; and
Ey.,; pertain to the equilibrium exploitation rate of stock j in the fish-
ing area in the presence of an MPA network (s) and in the absence
of additional MPAs, respectively. We derived the exploitation rate
per stock in a world with no MPAs (E, ;) using the ‘conservation con-
cern’ business-as-usual scenario of a previous study?. This scenario
assigns future fisheries prospects according to current stock status
and managementas follows: (i) for assessed stocks, current exploita-
tionrates are held constant in perpetuity; (ii) for unassessed stocks of
‘conservation concern’ (thatis, those currently overfished or experi-
encingoverfishing), open-access dynamics are assumed; and (iii) for
unassessed, non-conservation concern stocks, the exploitation rate
is set to maintain current biomass. We then solve for the exploitation
rate per stock in the fishing area given currently implemented MPAs
and given our prioritized network of MPAs (s) by accounting for fishing
effort redistribution (see below).

Fishing effort redistribution

We considered two common fishing effort redistribution models: (1)
allfishing effortin areas designated as MPAs will transfer to the remain-
ing fishing areas (full-effort transfer); and (2) fishing effort in areas
designated as MPA will go away and the fishing effort density in fishing
area remains the same (no-effort transfer). If fishing effort displaces
after protection, it doesso such that the relative levels of fishing out-
side remain constant. We assume that effort redistributes across the
range of a stock proportionally to the distribution of effort before
protection. With full-effort transfer, the fishing mortality of a stock
outside an MPA increases in proportion to the size of the MPA,
that is, the new fishing mortality equals 1/(1 - R, ) times the fishing
mortality withnoadditional MPA”°73, The exploitation rate (E) can be
expressed in terms of fishing mortality as E=1- e, Hence, the
exploitation rate per stock in fishing area given the current MPAs
and given anetwork of MPAs (s)is givenby £, ; =1~ (1- E, )"/ Rbau)
and E, ;=1- (1- E, )/ *s/, respectively. Under the no-effort transfer
assumption, the exploitation rate experienced by the stock biomass
outsidethe MPA remains thesame (thatis, Ey,, ) after MPA implemen-
tation. Supplementary Figure 34 shows the results of both models.
The potential food provisioning benefit is slightly lower under the
no-effort redistribution assumption primarily because the total
catches fromunderfished and well-managed fisheries are lower com-
paredto the full-effort redistribution scenario in which fishers would

try to compensate for the harvest lost from MPAs by increasing fishing
effortin the remaining fishing areas.

Carbon benefit
We defined the carbon benefit (C) as a linear function of the amount
of carbon that remains given a set of protected areas (s), such that:

=X, and

XYY

ies i¢s
where c¢i" and ¢?" correspond to the fraction of total carbon that
remainsin pixelif{is protected, and if pixel /is left unprotected, respec-
tively. We estimate c["and cf"* using the same approach as in the bio-

diversity benefitbut without un-abatable impacts such that:

c"=c, and
0
out _ _
t=c (1-1,),

where; is the estimated carbon stored in the first meter of sediment
in pixel £, and J, is the fraction of that carbon that would be lost (that
is, remineralized to aqueous CO,) in the absence of protection. The
latter is estimated as:

Iai: SVR; x pcrdi x plabi x (1 B eiki[)’

where SVR, (swept volume ratio) is the fraction of the carbon in pixel {
thatis disturbed by bottom trawling and dredging fishing practices,
pcrdiis the proportion that resettles in pixel { after disturbance, Pab, is
the fraction of carbon that is labile, k;is the first-order degradation
rate constantand trepresents time, which is set to one year.

The SVR,;fromfishingis estimated by:

SVR;= ) SAR; , x Pacpth,”
g

whereSAR,, isthesweptarearatio of pixel iby vesselsusing gear g,and

Paepth isthe average penetration depthof gear type g.SAR,  is estimated
g
as follows:
AR = 20 TP X W,
ig = A 4

4

where TD, , is the trawled distance by vessel vin pixel i, W, is the width
ofthe gear trawled by vessel vand A;is the total area of pixel i. Trawled
distance (TD)isestimated using fishing activity detected by automatic
identification systems (AIS) data from Global Fishing Watch (GFW)
between2016and 2019.For eachvesselvineach celli, TDis the sum of
the product between time and speed across all AIS positions associated
with fishing activity in pixel i (see ref.™ for more details on detecting
fishingactivity from AIS). We include only those fishing vessels that are
registered as—or have been classified by GFW as—trawlers or dredgers.
We used official fishing registries from the European Union and the
Convention for the Conservation of Antarctic Marine Living Resources
(CCAMLR) torefinethis classificationinto five gear types: otter trawls,
beam trawls, towed dredges, hydraulic dredges and midwater trawls.
Vessels classified as midwater trawls were excluded entirely from this
analysis, because this gear type does not come into contact with the
seafloor. Vessels without official classification were classified as otter
trawls as these are the most common type of bottom trawlers in the
ocean. Finally, to minimize noise and AIS positions misclassified as
fishing, we include only fishing positions within the range of common
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depths and speeds reported for each gear type by Eigaard et al.”: otter
trawls, towing speeds of 2-4 knots and depths up to 2,000 m; beam
trawls, towing speeds of 2.5-7 knots and depths up to 100 m; towed
and hydraulic dredges, towing speed of2-2.5knots.

The widthofthetrawled gear of each vessel W,was estimated using
vessel-size-footprint relationshipsreported by Eigaard etal.”, suchas:

W) = 0.3142 x LOA**
Wory=10.6608 x KW 22!

Wgry=0.6601x KW-3078

where LOA isthe vessel’slength overallin meters, and KWis its engine
power. Within each gear type, there is variability in gear dimension
based ontarget speciesand other factors. Because we donot have data
onthetarget species of each vessel, we use the relationships reported
inEigaard etal.”> to specify gear dimension as thatassociated with the
largest variety of target species. We estimate that on average, a total
of 4.9 million km? of the ocean is trawled each year. This represents
around 1.3% of the total ocean area.

The remaining parameters were obtained from the scientific litera-
ture. We used the average penetration depths reported by Hiddink
etal.”*forotter trawls (2.44 cm),beam trawls (2.72 cm), towed dredges
(5.47 cm) and hydraulic dredges (16.11 cm). Of these gear types, otter
trawlers are the most prominent, with an average area fished of 4.65
million km? per year. As a result, the area-weighted average sediment
penetration depth across all gear types corresponds to 2.44 cm. The
fraction of carbonineachcell that resettles in that same cell after trawl-
ing (pcml ) was assumed constant at 0.87, and was estimated using the
averagefrom studies that quantified theamount of sediment load lost
following trawling or mining” ®. For this study we focused only on the
proportion of carbon thatislabile(p ), and thus more prone to rem-
ineralization after a disturbance. The labile fraction was estimated as
afunction of the type of sediment. We used sediment type as a proxy
for estimating the amount of labile carbon because it relates to many
aspects that can influence the preservation and remineralization of
organic matter (for example, oxygen penetration depths, permeabil-
ity, infaunal communities®>®* and physical protection®"), as well as
reflect its origin®. The proportion of labile carbon assigned to each
sediment type was estimated using literature values that were tuned
to our model®*¥; pixels dominated by ‘fine’ sediments such as muds,
silts or biogenic (more than 50% of pixel area) were assigned a P, =07,
those dominated by ‘coarse’ sediments like gravel (more than 5‘0‘7) a
Piab, = =0.286, and the remaining combinations of ‘sandy’ sediments
were assigned a Py, = 0-04. We classified pixel sediment types using
the sediment I|th0l0gy from a previous study’?, grouped as follows:
coarse: gravel, coarse sediments, ash-volcanic, shells and coral frag-
ments; sandy: sand and fine-grained calcareous sediment; fines: silt,
clay and siliceous mud; biogenic: radiolarian ooze, diatom ooze, mix
calcareous-siliceous ooze, siliceous ooze and calcareous ooze.

The first-order degradation rate constants (k;) were assigned as
afunction of oceanic region, and were estimated from ranges of
values presented in the literature for oxic sediments that were then
tuned to our model®**®; North Pacific = 1.67, South Pacific = 3.84,
Atlantic =1.00, Indian = 4.76, Mediterranean = 12.3, Arctic = 0.275,
Gulf of Mexico and Caribbean =16.8. Values for the North and South
Atlantic, as well as the Gulf of Mexico and the Caribbean, were com-
bined owing to the paucity of studies in the South Atlantic and the
Caribbean. We included only oxic sediments in our model because
one of our main assumptions about physical disturbances to marine
sediments, such as benthic fishing, is that mixing of the sediments
and resuspension increases theamountof time the disturbed carbon
isin contact with oxygen®®

Finally, to avoid the random ranking of pixels without bottom
trawling but with different amounts of carbon, we assigned a small
and constant /,=107°to each pixel without trawling data. To be as
precise as possible, we performed the analysis to estimate the annual
CO, efflux at al-km resolution. This minimizes the risk of overestima-
tion dueto a coarse scale. However, to harmonize the carbon analysis
with biodiversity and food provision, we ran the carbon model ata 50
km x 50-km resolutioninall multi-objective prioritizations. As aresult,
we probably overestimate the total areainwhichtrawlingisoccurring
and subsequently the total areaneeded to safeguard carbon stocks.On
the other hand, although the GFW database isthe most comprehensive
publicly available source of fishing effort data, it does not account for
every single bottom trawler in the world and lacks fishing effort data
for thousands of fishing vessels that do not carry AIS, predominantly
from developing nations.

Finally, to report the total benthic annual CO, efflux (Mg CO,), we
estimate the efflux in a given pixel {as:

COy =wxco X1y,

where ¢, is the carbon stored in the first meter of sediment in pixel /,
1, istheisthe fraction of that carbon that would belostin the absence
ofprotectlon (as defined above) and wis theratio of the weight of CO,
relative to that of C (thatis, 3.67 tons of CO, equal to1ton of C).

Overall, we found that the average carbon stock in sediments dis-
turbed by bottom trawling is 9.1 x 10> Mg C km™(global average is
6.6 x 10* Mg C km™). The average remineralization efficiency of dis-
turbed carbon—estimated asthe mean across pixel level remineraliza-
tionrates—is 29.7%.

Carbonmodel validation

Cross-comparisons of our model results for the effects of trawling on
CO, efflux from the sediment—water interface are difficult because of
the novelty of this topic. Although several studies have documented
increased benthic metabolism after trawling, most of these studies
have measured changes in oxygen or variables other than CO, efflux.
Furthermore, the studies that have measured CO, efflux from the
sediment-water interface are non-spatial in nature. To validate our
model, we compared our predicted values with measured CO,annual
efflux valueseither from studies that explicitly measured CO, efflux at
the sediment-waterinterface from trawled sediments, or from benthic
metabolism studies that were conducted in areas in which trawling
occurs. Inall cases, studies provided only descriptions of site locations
or coarse GPS coordinates. Asaresult, we compared the measured value
fromthe study with an average predicted value for the study location. In
total, wefound four studies that met our criteria for comparisons(See
Supplementary Table 2). Our predicted CO, annual efflux values are of
the same order of magnitude and underestimate the reported values.
The root-mean-square error of the predicted values is 0.004 x 10° mol
CO, km~andalog-transformed linear regression yields R*= 0.79.

Effects of multiple years of trawling on carbon efflux
Let C,bethetotal carboninthefirst metre of the sedimentsaffected by
bottom trawling. Assuming that the footprintand intensity of bottom
trawling remains constant every year, we model net carbon depletion
as: C,,,=C,+ CA,- CL, where C, isthe carbon stock in time ¢, CA,is the
annual addition of carbon from external sources and CL,is the carbon
losteachyear. The carbon stocksintrawled sedimentsinyear zero (C,)
are 54.89 x10° Mg C (from this analysis), and the annual addition of car-
bonintotrawled areas from external sourcesamounts to 96.04 x10°Mg
C,which wecalculate as the product of the total areatrawled (4.9 x 10°
km?; fromthisanalysis) and the average carbonaccumulation rates for
coastal shelf systems (19.6 Mg C km2 yr ™) (ref. %).

The annual carbon lost each year as a result of trawling comprises:
(1) carbonthatis resuspended into the water columnand thenlaterally



transported to a different pixel where its fate is unknown (CT); and
(2) carbon that is remineralized in the sediment (CR). Thus CL,=CT,
+CR,, where CT,=C4(1-pcrd), and CR,=C,¢, where pcrd is the frac-
tion of disturbed sediment that resettles (pcrd = 0.87), and e iis the
remineralization efficiency of disturbed sediments (¢ = 0.3, from our
analysis). C, corresponds to the carbon that is disturbed each year by
trawling, which we define as:

Cae=Cqe™ CT - CR.;+( +CA,,

where C,is the newly available labile carbon that comes from deeper
sediment layersthathave becomerecently exposed by trawling-induced
erosion in year. This is estimated as the difference between the aver-
age trawl penetration depth (pd =2.44 cm) and the depth of sediment
resettled after previous trawling; accounting for natural sediment
accumulation rates (rs = 0.07 cm yr ' for coastal shelf systems®°):
C,=Cy(pd - pd x pcrd - rs). This yields an annual deepening of the
disturbed carbon layer of 0.0024 m yr™.

Thisanalysissuggestsit would take around 400 yearsfor trawling (at
its current scale and intensity) to exhaust all of the sedimentsinthe top
1 m. Moreover, we find that remineralization rates stabilize at 40% of
theinitial rate after the 9th successive year of constant trawling (Sup-
plementaryFig. 35). Our assumptionsare thatcarbonlosses and addi-
tions are constant year to year, carbon stocks are equally distributed
inthetop metre of sediment, carbon stocksstoredinsediment deeper
than that which is directly affected by the trawl are unaffected, and
thateachpixelwhere thereisbottomtrawlingisdisturbed onceayear.

Ranking algorithm
Weimplemented a heuristic, forward-looking algorithmtoiteratively
select pixels that maximize our defined benefit functionsat each step.
This approach builds on the existing and widely used zonation algo-
rithm®® but differsintwo important ways. First, ourapproach does not
impose the constraint that protecting the entire world is best, which
enables us to use non-monotonic benefit functions, such as the one
forfood provisioning. Second, ouralgorithm canaccount forthevalue
of unprotected cells, which allows us to base benefit functions on the
entirelandscape, notonly on those cellsselected for protection. Using
the biodiversity objective as an example, the algorithm operates as
follows:
1. Computestarting conditions. Given the current protected areas and
the distribution of human impacts, estimate the biodiversity benefit
forevery feature under business as usual.
2.Setrankr=0.
3.Estimate the marginal increase in benefit 6B from protecting each
pixel i:

6B;=B B

i = Dso+i T Py
681' = z O.j'(ij”)z - z O.j'(ij)z’
i i

which can be approximated as

6Bi = Z O'jAX .iSjD
J

68~ afuif-vi9S,,
7

where S; is the derivative of the benefit function with respect to X; at
any given step.

4.Select the pixel kthat maximizes 6Band assignitarankof r=r+1.
5.Update current conditions.

6.Return to step 3 until all pixels have been selected.

Note that at any given step, the slope S;,is independent of the pixel
ithatisbeingevaluated for selection, and thusit needstobe estimated
only onceforeachfeature®. Furthermore, foragivenfeature, the deci-
sion to select a pixel depends only on the pixel-specific difference in
value with and without protection, which in turn depends on the rela-
tivelevels of abatable and un-abatable impacts such that:

v = vt =0y (L= 1),

It is this interaction between types of impacts in a given cell that
gives higher priority to areas in which abatable impacts are relatively
high and un-abatable impacts are relatively low.

Given the global scale of this analysis, we made the simplifying
assumption that the costs to establish, implement and manage MPAs
are uniform. Realistic, comprehensive and spatially explicit datasets
thataccountfor variationsin these costs for MPAs arenot available at
present. However, when possible, such data can and should be inte-
grated into our prioritization framework at scales relevant for con-
servation planning®*%4,

Multi-objective prioritization

We jointly maximize multiple objectives for biodiversity, carbon and
food by combining them into a single benefit function such that the
utility of a set of protected pixels (U,) can be defined as:

Us = ast + acCs + astr

where ay, a. and a;correspond to the weights given to the biodi-
versity, carbon and food objectives, respectively, which in turn
reflect our preferences for each of the three goals. As there is no
globally accepted weighting scheme to aggregate our three goals,
any multi-objective optimization will be subjective. To illustrate
the possibilities without imposing our own subjectivity, we explore
how the optimal level of ocean protection to maximize net benefits
changes given different preferences. For this analysis, we vary the
weight given to biodiversity across a range of ~100x to 100x the
weight placed onfood provisioning. For example, a weight of 1 would
mean that the value of reaching the maximum biodiversity benefits
is equal to the value of the maximum change in catch (5.9 MMT). A
value of 0.5 would indicate that food provisioning is twice as valu-
able as biodiversity, and a value of -1 would imply that by reaching
maximum biodiversity benefits we would incur a loss comparable
to losing 5.9 MMT of catch. For this exercise we treat carbon as a
co-benefit and assign it a weight of zero.

Incorporating climate change

We framed our exploration of how climate change affectsbiodiversity
conservation priorities by asking how an MPA network designed for
today compares to a network designed for the future. To answer this
question, we conducted a biodiversity prioritization with projected
species distributions (2050, SRES A2 emissions scenario™*") and sea-
mounts, but excluded biogeographical provinces and current human
impacts, because the future spatial configurations of these are pres-
ently unknown. The SRES A2 scenario describes a world that is char-
acterized by high regional heterogeneity with continuous population
growth in the twenty-first century. Cumulative CO, emissions by the
middle and end of the twenty-first century are projected to be about
600 and 1,850 Gt C respectively?. Data on the future distributions of
seabirds were not available, and these species were excluded from
these analyses.

National priorities and random analysis

We explored theimplications of national planning—whereby priorities
aredrivenby thelevel of representation of each feature withina coun-
try’s EEZ—as opposed to globally coordinated planningbased on global
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feature representation. Effectively, this means running the prioritiza-
tionindependently foreach country but with the pixel-specificvalues
(Ui.jo) representing the fraction of the country-level total suitable
habitat contained within each pixel. The result is a ranking for each
country, whichwe used tobuild aglobal ranking based on the marginal
increase in biodiversity benefit arising from each pixel. To measure
theimplications of thisnation-centricapproach, we measured thelevel
of protection needed to reach 90% of the total global biodiversity ben-
efits and compared it with the globally coordinated priorities. Finally,
we built a null model of biodiversity conservation benefits following
arandom prioritization by generating 100 sets of randomly ordered
pixels and evaluating their performance against a globally optimized
solution.

Uncertainty analysis

We assessed the robustness of our results to two common sources of
uncertainty in conservation planning: (1) commissionerrorsin species
distributionmaps; and (2) weighting of individual features. Ithasbeen
shown that at global and coarse scales, commission errors are more
common and important to assess than omission errors as these can
introduce an overestimation of biodiversity representation in spatial
planning®%.Furthermore, although we aim tominimize the subjectiv-
ity of assigning feature weights by using ecologically relevant metrics
(extinction risk, evolutionary distinctiveness and functional distinc-
tiveness), these—and our approach to combine them—are only a subset
of many possible alternatives. Thus, to investigate these sources of
uncertainty weran 1,000 iterations of the biodiversity prioritization,
randomly removing up to 30% of each speciesdistribution,and adding
random errorsto feature weightsineachiteration. Thefractionof each
species distribution to remove was drawnfroma uniform distribution
U[0, 0.3], and the errors added to each feature weight (w) were ran-
domly drawn from auniformdistribution U[-sd(w), sd(w)]. We present
maps of the fraction of all runs in which each pixel was within the top
5% and 10% of the prioritization solution (Supplementary Figs. 20, 21)
as well as a map of the coefficient of variation of each pixel across all
runs (Supplementary Fig. 22). Although this approach helps usto assess
the robustness of high priority areas for biodiversity conservation, it
is limited by the unrealistic assumption that commission errors are
randomly distributed. We restrict the assessment of uncertainty tothe
biodiversity component of our analysis because the carbon, fisheries
and human impact components have been assessed elsewhere®?,

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The underlying data used in this study are available from the sources
listed in the Supplementary Information.

Code availability

TheR code that supportsthe findings of this studyis available at https://
github.com/emlab-ucsb/ocean-conservation-priorities.
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